Skip to content

Usage

Quick start

To run the Volumes & Segmentations toolkit and produce the static files suitable for visualization at the frontend:

  1. Build the internal database by adding desired entries using preprocessor (see Documentation for preprocess command of Preprocessor and examples on how to add entries to the internal database)

  2. From repository root (molstar-volseg by default) run:

        python --db_path PATH_TO_DB --out OUTPUT_FILE --json-params-path PATH_TO_JSON_WITH_PARAMETERS
    

Arguments description

Argument Description
--db_path The --db_path argument is mandatory and dictates the path to the internal database constructed using the Preprocessor
--out The --out argument is mandatory and specifies the desired name for the output file. This file name must include the mandatory .cvsx extension
--json-params-path The --json-params-path argument is obligatory and defines the path to the JSON file containing the user-specified query parameters (see table below)

Query parameters

Parameter Description Kind Type Default
entry_id ID of entry in internal database (e.g. emd-1832) mandatory string N/A
source_db Source database (e.g. emdb) mandatory string N/A
segmentation_kind Kind of segmentation (e.g. lattice) optional 'mesh', 'lattice', 'geometric-segmentation' all segmentation kinds
time Timeframe index optional integer all available time frame indices
channel_id Volume channel ID optional string all available channel IDs
segmentation_id Segmentation ID optional string all available segmentation IDs
max_points Maximum number of points for volume and/or lattice segmentation. Used to determine the most suitable downsampling level optional integer 1000000000000

Example

This example shows how produce results.cvsx CVSX file for idr-13457537internal database entry (with the database located in temp/test_db) containing the volume data for channel 2 and timeframe index 4, and segmentation data for all available segmentation kinds and timeframe index 4

First create json_with_query_params.json file with the following content:

{
        "entry_id": "idr-13457537",
        "source_db": "idr",
        "channel_id": "2",
        "time": 4
}

Then use the following command:

python vs_toolkit.py --db_path temp/test_db --out results.cvsx --json-params-path json_with_query_params.json

This will query data for channel 2 and time frame 4 for volume and data for all available segmentation kinds and time frame 4, and pack it into idr-13457537.cvsx file